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Abstract. The electron self-energy of the t1u states in A3C60 (A = K,Rb) is calculated using
the so-calledGW approximation. The calculation is performed within a model which considers
the t1u charge-carrier plasmon at 0.5 eV and takes into account scattering of the electrons within
the t1u band. A moderate reduction (35%) of the t1u band width is obtained.

1. Introduction

The alkali-doped fullerenes A3C60 (A = K, Rb) have a low-energy charge-carrier plasmon
at an energy of about 0.5 eV [1–3], which essentially results from the oscillation of the
alkali electrons donated to the t1u band. This plasmon has a rather strong coupling to the
electrons, and it is believed to play an important role in producing the anomalously large
band width seen in angle-integrated photoemission for these systems [4], since it can cause
large-binding-energy plasmon satellites.

It is interesting to calculate the electron self-energy due to the coupling to the plasmons,
to more generally study the effects of the plasmons on the electronic properties. We here
use the so-calledGW approximation, where the self-energy is calculated to lowest order
in the screened Coulomb interaction [5]. This approximation has been widely applied to
the electron gas, free-electron-like systems, and semiconductors. For these systems it is
found that the self-energy has a moderate effect on the electron dispersion, and that it can
somewhat increase or reduce the effective mass, depending on the system. A3C60, however,
has a quite different band structure to these systems, and it is interesting to ask whether the
effective mass and the width of the band might be more strongly modified in this system.

This issue is, for instance, raised by the results for the optical conductivity.
Experimentally, the Drude peak is very narrow [6], perhaps an order of magnitude narrower
than predicted by a one-particle theory [7]. This may suggest that the effective mass
is greatly enhanced in A3C60. On the other hand, the specific heat has been estimated
to be small [8], perhaps even smaller than would have been expected from band-structure
calculations [9], suggesting that the effective mass is not strongly renormalized, and perhaps
even somewhat reduced. The coupling to phonons with the coupling constantλph reduces
the dispersion by a factor of 1/(1 + λph). If this result is directly taken over for the
plasmons, we may estimate a coupling constantλpl ∼ 2.5, and a substantial reduction
(more than a factor of three) of the dispersion.

The coupling to a plasmon studied here corresponds to theGW method in the plasmon
pole approximation, which was first introduced and extensively studied by Lundqvistet al
[10] and later by Overhauser [11] for the electron gas. Shirley and Louie have applied the
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GW approximation to solid C60 [12]. Since they considered undoped C60, the t1u plasmon
considered here did not enter their calculation, while the contribution to the self-energy in
their calculation (a plasmon at about 25 eV) is not included in the model used below. The
two calculations are therefore complementary, and address different parts of the physics of
A3C60.

The coupling to the plasmon leads to a so-called plasmaron satellite in the spectral
function, where a plasmon has been excited [10]. This satellite is obtained in theGW

approximation [10], but a more accurate treatment would also give higher satellites with
several plasmons excited [13, 14]. These higher plasmon satellites are believed to be
important for the broad spectrum seen in angle-integrated photoemission for A3C60 [4, 15].
TheGW approximation can therefore not be expected to give an accurate spectrum in the
satellite region. We also observe that the Coulomb interactionU between two electrons on
the same C60 molecule is large compared with the t1u band widthW [16], which suggests
that many-body effects beyond theGW approximation may be important. For instance, a
proper treatment of the threefold degeneracy of the t1u orbital is important for understanding
why these systems are not Mott–Hubbard insulators, in spite of the large value ofU/W

[17]. TheGW results for A3C60 should therefore be treated with a certain caution, but it is
still interesting to see whether a strong renormalization of the band width is obtained.

In section 2 we present the formalism, and in section 3 the model used in these
calculations. The results are presented in section 4, and discussed in section 5.

2. Formalism

We write the dielectric function of A3C60 as

ε(q, ω) = ε0−
ω2

0p

m∗ω2
(1)

whereε0 is the contribution toε due to all excitations in the system except the ones inside
the t1u band. Since most of these excitations have a rather high energy relative to the energy
scale of interest here (the t1u band width), we assumeε0 to be energy independent. The
second term describes the excitations inside the t1u band. ω0p is the plasmon frequency
one would deduce for free electrons with the same density as the t1u electrons, andm∗ is
the band mass of the t1u electrons. The value ofω whereε(q, ω) = 0 gives the plasmon
frequency

ωp = ω0p√
m∗ε0

. (2)

Above, we have neglected local-field effects as well as theq-dependence ofε0. Neither
approximation is quite justified [2]. Thus theq-dependence ofε0 tends to giveωp a positive
dispersion, while the local-field effects tend to give a negative dispersion. As far as the
plasmon frequency is concerned, however, these two effects essentially cancel, in agreement
with the experimental observation thatωp has a negligible dispersion [2]. Equations (1) and
(2) therefore give a good description of the plasmon frequency, but neglect the substantial
broadening of the plasmon [3].

For K3C60, the t1u electron density corresponds to the electron gas density parameter
rs = 7.3a0 andω0p = 2.4 eV. In an electron gas of this density, the occupied part of the
band is about 0.9 eV, while the calculated full band width of K3C60 is about 0.6 eV [9].
This corresponds tom∗ ∼ 0.9/(0.6/2) = 3. At q = 0, ε0 ∼ 4.4 [18]. We then find that
ωp ∼ 0.66 eV. This is somewhat larger than the experimental result,ωp ∼ 0.5 eV [2],
which will be used in the following.
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The self-energy is in theGW approximation written as [5]

6nn′(k, ω) = i
∑
k′n′′

∫
dω′

2π

Unn′′,n′n′′(k − k′)
ε(ω′)

eiω′0+

ω + ω′ − εk′n′′ + µ0
(3)

whereUnn′′,n′n′′(k − k′) is the Coulomb matrix element connecting the Bloch states|kn〉
and |k′n′′〉 with the argumentr, and |kn′〉 and |k′n′′〉 with the argumentr′. Herek is a
wave vector andn a band index. 0+ is a positive infinitesimal number, which ensures the
proper behaviour for largeω′. εk′n′′ is the noninteracting energy of the state|k′n′′〉, andµ0

is an average of the self-energy over the Fermi surface. We split the dynamically screened
Coulomb interactionU/ε in two parts:

U

ε(ω)
= U

ε0
+ ωpU

2ε0

2ωp
ω2− ω2

p

. (4)

The first term then gives a statically screened exchange contribution to the self-energy:

6x
nn′(k, ω) = −

1

ε0

occ∑
k′n′′

Unn′′,n′n′′(k − k′) (5)

while the second part gives a correlation contribution. We can interpret 2ωp/(ω
2 − ω2

p) in
equation (4) as a boson Green’s function, and

g2
nn′′,n′n′′(q) =

ωp

2ε0
Unn′′,n′n′′(q) (6)

as a coupling constant, in analogy with previous work [10]. Closing the integration contour
in the upper half of the complexω′-plane, we obtain the correlation contribution to the
self-energy:

6c
nn′(k, ω) =

ωp

2ε0

occ∑
k′n′′

Unn′′,n′n′′(k − k′)
ω − εk′n′′ + µ0+ ωp +

ωp

2ε0

unocc∑
k′n′′

Unn′′,n′n′′(k − k′)
ω − εk′n′′ + µ0− ωp . (7)

3. The model

We consider a model with three t1u orbitals. The hopping matrix elements connecting these
orbitals have been described in a tight-binding parametrization [19, 20], which is used here.
This parametrization is used to calculate the noninteracting band-structure energiesεkn, and
wave functions

ψkn(r) =
3∑
ν=1

c(n)ν φkν(r) (8)

where

φkν(r) = 1√
N

N∑
j=1

eik·Rj 8ν(r −Rj ) (9)

is a Bloch state of a t1u molecular orbital8ν(r). There areN molecules with the coordinates
Rj .

We further have to specify the matrix elements of the Coulomb interaction. We assume
that∫

d3r

∫
d3r ′ 8ν1(r −R)8ν2(r −R)

e2

|r − r′|8ν3(r
′ −R′)8ν4(r

′ −R′)
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= δν1ν2δν3ν4 ×


e2

|R−R′| if R 6= R′

U0 if R = R′.
(10)

For the Coulomb matrix elements connecting Bloch states we then find

〈kν1k
′ν2| e2

|r − r′| |kν3k
′ν4〉 = 1

N

(
U0+

∑
R 6=0

ei(k−k′)·R

|R|
)
δν1ν2δν3ν4. (11)

We replace the sum overR by an integral over all space outside a Wigner–Seitz sphere
with the radiusR0 = 5.56 Å. This gives

〈kν1k
′ν2| e2

|r − r′| |kν3k
′ν4〉 = 1

N

[
U0+ 4πe2

�|k − k′|2 cos(R0|k − k′|)
]
δν1ν2δν3ν4 (12)

where� is the volume of the Wigner–Seitz cell. We have putU0 = 4 eV, using a
simple estimate based on the radius of the C60 molecule. Alternatively, we can extend the
integration overR over all space, puttingR0 = 0. In this case we should putU0 = 0 to
avoid double counting.

Figure 1. The quasi-particle (GW ) (a) band structure for the t1u band compared with the
noninteracting tight-binding (TB) (b) and Hartree–Fock (HF) (c) band structures. Relative to
the TB band structure, theGW band width is reduced by about 35%, while the HF width is
increased by about 75%.
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4. Results

We have calculated the self-energy as described above. The quasi-particle energyEkn is
obtained by solving the equation

Ekn = εkn +6(k, Ekn) (13)

whereεkn is the band-structure energy. We can also obtain the quasi-particle weight as

Zkn = 1

1− δ6(k, ω)/δω (14)

where the derivative is evaluated at the quasi-particle energy. The resulting quasi-particle
(GW ) band structure is compared with the noninteracting tight-binding (TB) and Hartree–
Fock (HF) band structures in figure 1. The figure shows a moderate reduction (∼35%) of
theGW band width relative to the TB width, while the HF band width is almost a factor
of two larger (75%) than the TB result.

The quasi-particle strength is relatively small,Z ∼ 0.4–0.5. This is smaller than what
is found in electron gas calculations at metallic densities. Since the three t1u electrons
correspond to a very low density withrs ∼ 7, this small value ofZ is, however, not very
surprising. Actually, extrapolation of earlier [5]GW calculations for the electron gas to
rs = 7.3 suggestZ ∼ 0.52. The small value ofZ implies that a substantial spectral weight
is transferred to satellites.

ReplacingU0 = 4 eV andR0 = 5.56 Å in the model (12) byU0 = 0 andR0 = 0,
e.g., a pure 1/q2 interaction, gives a small change of the quasi-particle band structure. This
suggests that the results are not very sensitive to the details of the model.

5. Discussion

The results in figure 1 illustrate that there is a large cancellation between the exchange
and correlation effects. This is also observed in the electron gas, although in that case the
cancellation is more complete than here [5, 10].

Of particular interest is the energy dependence of the self-energy. For the sake of the
discussion, we neglect theq-dependence of the coupling constantg(q) (equation (6)) and
replace it by its average over the Brillouin zone. We further assume that the plasmons
couple to a nondegenerate band of width 2B and with a constant density of states. The
correlation part of the self-energy is then given by (equations (7))

Re6c
0(ω) =

λωp

2

[
ln

∣∣∣∣ω + B + ωpω + ωp

∣∣∣∣+ ln

∣∣∣∣ ω − ωp
ω − B − ωp

∣∣∣∣] (15)

where

λ = 2g2

ωp
N(0) = g2

ωpB
(16)

is a coupling constant defined as for the electron–phonon coupling, andN(0) = 1/(2B) is
the density of states. In the present case, we haveλ ∼ 2.5. In the limit |ω| � ωp � B,
we have

Re6c
0(ω) = −λω |ω| � ωp � B. (17)

In the opposite limit whereωp � B, |ω|, we have

Re6c
0(ω) = −

(
g

ωp

)2

ω |ω|, B � ωp. (18)
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The coupling constant(g/ωp)2 ∼ 1.4 in the present case. The ‘phonon’-like formula in
equation (17) predicts that the quasi-particle weight isZ ∼ 0.29, while the formula (18)
predictsZ ∼ 0.42. The latter result fits the actual calculations nicely—not too surprisingly
in view of the parameter range considered here (ωp = 0.5 eV,B = 0.3 eV). The fact that the
system is not in the ‘phonon’ parameter range (ωp � B) therefore means that correlation
effects lead to a less drastic narrowing of the band. This narrowing is furthermore to a
substantial degree compensated by exchange effects.

Nevertheless, the narrowing of the band is larger than found in theGW approximation
for the electron gas at metallic densities. We want to discuss this further.

We rewrite the self-energy as

6xc
nn′(k, ω) = −

1

2ε0

∑
k′n′′

Unn′′,n′n′′(k − k′)− 1

2ε0

occ∑
k′n′′

Unn′′,n′n′′(k − k′)(ω − εk′n′′ + µ0)

ω − εk′n′′ + µ0+ ωp

− 1

2ε0

unocc∑
k′n′′

Unn′′,n′n′′(k − k′)(ω − εk′n′′ + µ0)

ω − εk′n′′ + µ0− ωp . (19)

In the first term the sum is over the whole Brillouin zone, and it can therefore be shown that
within the model in equation (12) it is state independent. We can then focus on the next
two terms. Ifωp is very large, these two terms go to zero. The band is then just shifted to
lower energies, without any change in shape or width. We next consider finite values ofωp,
but for a moment we assume thatωp is still larger than the band width. Ifω+µ0 is put at
the bottom of the band, both terms are then positive for allk′′. States at the bottom of the
band are then pushed upwards by the last two terms. In the same way, states at the top of
the band are pushed downwards, leading to a narrowing of the band. These arguments are
not qualitatively different ifωp is somewhat smaller than the noninteracting band width.
Some of the energy denominators in equation (19) could become negative, but the effect
of reducingωp tends to be a further reduction of the band width. We observe that these
arguments are specific to this model, where we have assumed that the states have not just
a lower bound but also an upper bound. For the electron gas and most other systems there
is no upper bound, and no definite statements of this type can be made.

In the calculation above, we have only considered the coupling to the t1u charge-carrier
plasmon, and neglected the coupling to, e.g., the plasmon at about 25 eV as well as the
exchange interaction with all occupied states except the t1u states. These effects were
considered in the calculation by Shirley and Louie [12], who found a broadening of the
t1u band by about 30%. If this broadening is added to our results, we find an essentially
unchanged t1u band width. This result can then not explain the narrow Drude peak in
the optical conductivity, but it is essentially consistent with the rather small specific heat
deduced for these systems.
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